Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of solutions for a quasilinear elliptic system with local nonlinearity on $\mathbb R^N$ (2010.14711v1)

Published 28 Oct 2020 in math.AP

Abstract: In this paper, we investigate the existence of solutions for a class of quasilinear elliptic system \begin{eqnarray*} \begin{cases}{ccc} -\mbox{div}(\phi_1(|\nabla u|)\nabla u)+V_1(x)\phi_1(|u|)u=\lambda F_u(x, u,v), \ \ x\in \mathbb RN, -\mbox{div}(\phi_2(|\nabla v|)\nabla v)+V_2(x)\phi_2(|v|)v=\lambda F_v(x, u,v), \ \ x\in \mathbb RN, u\in W{1,\Phi_1}(\mathbb RN), v\in W{1,\Phi_2}(\mathbb RN), \end{cases} \end{eqnarray*} where $N\ge 2$, $\inf_{\mathbb RN}V_i(x)>0,i=1,2$, and $\lambda>0$. We obtain that when the nonlinear term $F$ satisfies some growth conditions only in a circle with center $0$ and radius $4$, system has a nontrivial solution $(u_\lambda,v_\lambda)$ with $|(u_{\lambda},v_{\lambda})|{\infty}\le 2$ for every $\lambda$ large enough, and the families of solutions ${(u\lambda,v_\lambda)}$ satisfy that $|(u_\lambda,v_\lambda)|\to 0$ as $\lambda\to \infty$. Moreover, a corresponding result for a quasilinear elliptic equation is also obtained, which is better than the result for the elliptic system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.