Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impossibility Results for Grammar-Compressed Linear Algebra (2010.14181v1)

Published 27 Oct 2020 in cs.CC and cs.LG

Abstract: To handle vast amounts of data, it is natural and popular to compress vectors and matrices. When we compress a vector from size $N$ down to size $n \ll N$, it certainly makes it easier to store and transmit efficiently, but does it also make it easier to process? In this paper we consider lossless compression schemes, and ask if we can run our computations on the compressed data as efficiently as if the original data was that small. That is, if an operation has time complexity $T(\rm{inputsize})$, can we perform it on the compressed representation in time $T(n)$ rather than $T(N)$? We consider the most basic linear algebra operations: inner product, matrix-vector multiplication, and matrix multiplication. In particular, given two compressed vectors, can we compute their inner product in time $O(n)$? Or perhaps we must decompress first and then multiply, spending $\Omega(N)$ time? The answer depends on the compression scheme. While for simple ones such as Run-Length-Encoding (RLE) the inner product can be done in $O(n)$ time, we prove that this is impossible for compressions from a richer class: essentially $n2$ or even larger runtimes are needed in the worst case (under complexity assumptions). This is the class of grammar-compressions containing most popular methods such as the Lempel-Ziv family. These schemes are more compressing than the simple RLE, but alas, we prove that performing computations on them is much harder.

Citations (10)

Summary

We haven't generated a summary for this paper yet.