Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal ASR: Unifying Streaming and Non-Streaming ASR Using a Single Encoder-Decoder Model (2010.14099v1)

Published 27 Oct 2020 in cs.SD and eess.AS

Abstract: Recently, online end-to-end ASR has gained increasing attention. However, the performance of online systems still lags far behind that of offline systems, with a large gap in quality of recognition. For specific scenarios, we can trade-off between performance and latency, and can train multiple systems with different delays to match the performance and latency requirements of various application scenarios. In this work, in contrast to trading-off between performance and latency, we envisage a single system that can match the needs of different scenarios. We propose a novel architecture, termed Universal ASR that can unify streaming and non-streaming ASR models into one system. The embedded streaming ASR model can configure different delays according to requirements to obtain real-time recognition results, while the non-streaming model is able to refresh the final recognition result for better performance. We have evaluated our approach on the public AISHELL-2 benchmark and an industrial-level 20,000-hour Mandarin speech recognition task. The experimental results show that the Universal ASR provides an efficient mechanism to integrate streaming and non-streaming models that can recognize speech quickly and accurately. On the AISHELL-2 task, Universal ASR comfortably outperforms other state-of-the-art systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhifu Gao (28 papers)
  2. Shiliang Zhang (132 papers)
  3. Ming Lei (52 papers)
  4. Ian McLoughlin (30 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.