Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis for Computation of Coupled Advection-Diffusion-Reaction Problems (2010.14050v2)

Published 27 Oct 2020 in math.NA and cs.NA

Abstract: A study is presented on the convergence of the computation of coupled advection-diffusion-reaction equations. In the computation, the equations with different coefficients and even types are assigned in two subdomains, and Schwarz iteration is made between the equations when marching from a time level to the next one. The analysis starts with the linear systems resulting from the full discretization of the equations by explicit schemes. Conditions for convergence are derived, and its speedup and the effects of difference in the equations are discussed. Then, it proceeds to an implicit scheme, and a recursive expression for convergence speed is derived. An optimal interface condition for the Schwarz iteration is obtained, and it leads to "perfect convergence", that is, convergence within two times of iteration. Furthermore, the methods and analyses are extended to the coupling of the viscous Burgers equations. Numerical experiments indicate that the conclusions, such as the "perfect convergence, " drawn in the linear situations may remain in the Burgers equations' computation.

Summary

We haven't generated a summary for this paper yet.