Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Class Zero-Shot Learning for Artistic Material Recognition (2010.13850v1)

Published 26 Oct 2020 in cs.CV and cs.LG

Abstract: Zero-Shot Learning (ZSL) is an extreme form of transfer learning, where no labelled examples of the data to be classified are provided during the training stage. Instead, ZSL uses additional information learned about the domain, and relies upon transfer learning algorithms to infer knowledge about the missing instances. ZSL approaches are an attractive solution for sparse datasets. Here we outline a model to identify the materials with which a work of art was created, by learning the relationship between English descriptions of the subject of a piece and its composite materials. After experimenting with a range of hyper-parameters, we produce a model which is capable of correctly identifying the materials used on pieces from an entirely distinct museum dataset. This model returned a classification accuracy of 48.42% on 5,000 artworks taken from the Tate collection, which is distinct from the Rijksmuseum network used to create and train our model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.