Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
84 tokens/sec
Gemini 2.5 Pro Premium
49 tokens/sec
GPT-5 Medium
16 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
476 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Black-box density function estimation using recursive partitioning (2010.13632v2)

Published 26 Oct 2020 in stat.ML and cs.LG

Abstract: We present a novel approach to Bayesian inference and general Bayesian computation that is defined through a sequential decision loop. Our method defines a recursive partitioning of the sample space. It neither relies on gradients nor requires any problem-specific tuning, and is asymptotically exact for any density function with a bounded domain. The output is an approximation to the whole density function including the normalisation constant, via partitions organised in efficient data structures. Such approximations may be used for evidence estimation or fast posterior sampling, but also as building blocks to treat a larger class of estimation problems. The algorithm shows competitive performance to recent state-of-the-art methods on synthetic and real-world problems including parameter inference for gravitational-wave physics.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.