Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where to Look and How to Describe: Fashion Image Retrieval with an Attentional Heterogeneous Bilinear Network (2010.13357v1)

Published 26 Oct 2020 in cs.CV

Abstract: Fashion products typically feature in compositions of a variety of styles at different clothing parts. In order to distinguish images of different fashion products, we need to extract both appearance (i.e., "how to describe") and localization (i.e.,"where to look") information, and their interactions. To this end, we propose a biologically inspired framework for image-based fashion product retrieval, which mimics the hypothesized twostream visual processing system of human brain. The proposed attentional heterogeneous bilinear network (AHBN) consists of two branches: a deep CNN branch to extract fine-grained appearance attributes and a fully convolutional branch to extract landmark localization information. A joint channel-wise attention mechanism is further applied to the extracted heterogeneous features to focus on important channels, followed by a compact bilinear pooling layer to model the interaction of the two streams. Our proposed framework achieves satisfactory performance on three image-based fashion product retrieval benchmarks.

Citations (26)

Summary

We haven't generated a summary for this paper yet.