Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attack Agnostic Adversarial Defense via Visual Imperceptible Bound (2010.13247v1)

Published 25 Oct 2020 in cs.CV and cs.CR

Abstract: The high susceptibility of deep learning algorithms against structured and unstructured perturbations has motivated the development of efficient adversarial defense algorithms. However, the lack of generalizability of existing defense algorithms and the high variability in the performance of the attack algorithms for different databases raises several questions on the effectiveness of the defense algorithms. In this research, we aim to design a defense model that is robust within a certain bound against both seen and unseen adversarial attacks. This bound is related to the visual appearance of an image, and we termed it as \textit{Visual Imperceptible Bound (VIB)}. To compute this bound, we propose a novel method that uses the database characteristics. The VIB is further used to measure the effectiveness of attack algorithms. The performance of the proposed defense model is evaluated on the MNIST, CIFAR-10, and Tiny ImageNet databases on multiple attacks that include C&W ($l_2$) and DeepFool. The proposed defense model is not only able to increase the robustness against several attacks but also retain or improve the classification accuracy on an original clean test set. The proposed algorithm is attack agnostic, i.e. it does not require any knowledge of the attack algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Saheb Chhabra (7 papers)
  2. Akshay Agarwal (24 papers)
  3. Richa Singh (76 papers)
  4. Mayank Vatsa (71 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.