Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Autoencoders for Multifaceted Preference Learning in One-class Collaborative Filtering (2010.12803v1)

Published 24 Oct 2020 in cs.IR and cs.LG

Abstract: Most existing One-Class Collaborative Filtering (OC-CF) algorithms estimate a user's preference as a latent vector by encoding their historical interactions. However, users often show diverse interests, which significantly increases the learning difficulty. In order to capture multifaceted user preferences, existing recommender systems either increase the encoding complexity or extend the latent representation dimension. Unfortunately, these changes inevitably lead to increased training difficulty and exacerbate scalability issues. In this paper, we propose a novel and efficient CF framework called Attentive Multi-modal AutoRec (AMA) that explicitly tracks multiple facets of user preferences. Specifically, we extend the Autoencoding-based recommender AutoRec to learn user preferences with multi-modal latent representations, where each mode captures one facet of a user's preferences. By leveraging the attention mechanism, each observed interaction can have different contributions to the preference facets. Through extensive experiments on three real-world datasets, we show that AMA is competitive with state-of-the-art models under the OC-CF setting. Also, we demonstrate how the proposed model improves interpretability by providing explanations using the attention mechanism.

Citations (2)

Summary

We haven't generated a summary for this paper yet.