Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scale-, shift- and rotation-invariant diffractive optical networks (2010.12747v1)

Published 24 Oct 2020 in physics.optics, cs.NE, and physics.comp-ph

Abstract: Recent research efforts in optical computing have gravitated towards developing optical neural networks that aim to benefit from the processing speed and parallelism of optics/photonics in machine learning applications. Among these endeavors, Diffractive Deep Neural Networks (D2NNs) harness light-matter interaction over a series of trainable surfaces, designed using deep learning, to compute a desired statistical inference task as the light waves propagate from the input plane to the output field-of-view. Although, earlier studies have demonstrated the generalization capability of diffractive optical networks to unseen data, achieving e.g., >98% image classification accuracy for handwritten digits, these previous designs are in general sensitive to the spatial scaling, translation and rotation of the input objects. Here, we demonstrate a new training strategy for diffractive networks that introduces input object translation, rotation and/or scaling during the training phase as uniformly distributed random variables to build resilience in their blind inference performance against such object transformations. This training strategy successfully guides the evolution of the diffractive optical network design towards a solution that is scale-, shift- and rotation-invariant, which is especially important and useful for dynamic machine vision applications in e.g., autonomous cars, in-vivo imaging of biomedical specimen, among others.

Citations (59)

Summary

We haven't generated a summary for this paper yet.