Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text Style Transfer: A Review and Experimental Evaluation (2010.12742v4)

Published 24 Oct 2020 in cs.CL

Abstract: The stylistic properties of text have intrigued computational linguistics researchers in recent years. Specifically, researchers have investigated the Text Style Transfer (TST) task, which aims to change the stylistic properties of the text while retaining its style independent content. Over the last few years, many novel TST algorithms have been developed, while the industry has leveraged these algorithms to enable exciting TST applications. The field of TST research has burgeoned because of this symbiosis. This article aims to provide a comprehensive review of recent research efforts on text style transfer. More concretely, we create a taxonomy to organize the TST models and provide a comprehensive summary of the state of the art. We review the existing evaluation methodologies for TST tasks and conduct a large-scale reproducibility study where we experimentally benchmark 19 state-of-the-art TST algorithms on two publicly available datasets. Finally, we expand on current trends and provide new perspectives on the new and exciting developments in the TST field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhiqiang Hu (48 papers)
  2. Roy Ka-Wei Lee (68 papers)
  3. Charu C. Aggarwal (29 papers)
  4. Aston Zhang (48 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.