Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilizing Transformer-Based Action Sequence Generation For Q-Learning (2010.12698v2)

Published 23 Oct 2020 in cs.LG

Abstract: Since the publication of the original Transformer architecture (Vaswani et al. 2017), Transformers revolutionized the field of Natural Language Processing. This, mainly due to their ability to understand timely dependencies better than competing RNN-based architectures. Surprisingly, this architecture change does not affect the field of Reinforcement Learning (RL), even though RNNs are quite popular in RL, and time dependencies are very common in RL. Recently, Parisotto et al. 2019) conducted the first promising research of Transformers in RL. To support the findings of this work, this paper seeks to provide an additional example of a Transformer-based RL method. Specifically, the goal is a simple Transformer-based Deep Q-Learning method that is stable over several environments. Due to the unstable nature of Transformers and RL, an extensive method search was conducted to arrive at a final method that leverages developments around Transformers as well as Q-learning. The proposed method can match the performance of classic Q-learning on control environments while showing potential on some selected Atari benchmarks. Furthermore, it was critically evaluated to give additional insights into the relation between Transformers and RL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gideon Stein (6 papers)
  2. Andrey Filchenkov (18 papers)
  3. Arip Asadulaev (14 papers)
Citations (2)