Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Loss-analysis via Attention-scale for Physiologic Time Series (2010.12690v2)

Published 23 Oct 2020 in cs.LG, eess.SP, and physics.data-an

Abstract: Physiologic signals have properties across multiple spatial and temporal scales, which can be shown by the complexity-analysis of the coarse-grained physiologic signals by scaling techniques such as the multiscale. Unfortunately, the results obtained from the coarse-grained signals by the multiscale may not fully reflect the properties of the original signals because there is a loss caused by scaling techniques and the same scaling technique may bring different losses to different signals. Another problem is that multiscale does not consider the key observations inherent in the signal. Here, we show a new analysis method for time series called the loss-analysis via attention-scale. We show that multiscale is a special case of attention-scale. The loss-analysis can complement to the complexity-analysis to capture aspects of the signals that are not captured using previously developed measures. This can be used to study ageing, diseases, and other physiologic phenomenon.

Summary

We haven't generated a summary for this paper yet.