Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Translating Recursive Probabilistic Programs to Factor Graph Grammars (2010.12071v1)

Published 22 Oct 2020 in cs.PL and cs.LG

Abstract: It is natural for probabilistic programs to use conditionals to express alternative substructures in models, and loops (recursion) to express repeated substructures in models. Thus, probabilistic programs with conditionals and recursion motivate ongoing interest in efficient and general inference. A factor graph grammar (FGG) generates a set of factor graphs that do not all need to be enumerated in order to perform inference. We provide a semantics-preserving translation from first-order probabilistic programs with conditionals and recursion to FGGs.

Summary

We haven't generated a summary for this paper yet.