Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automating Abnormality Detection in Musculoskeletal Radiographs through Deep Learning (2010.12030v1)

Published 21 Oct 2020 in eess.IV, cs.CV, and cs.LG

Abstract: This paper introduces MuRAD (Musculoskeletal Radiograph Abnormality Detection tool), a tool that can help radiologists automate the detection of abnormalities in musculoskeletal radiographs (bone X-rays). MuRAD utilizes a Convolutional Neural Network (CNN) that can accurately predict whether a bone X-ray is abnormal, and leverages Class Activation Map (CAM) to localize the abnormality in the image. MuRAD achieves an F1 score of 0.822 and a Cohen's kappa of 0.699, which is comparable to the performance of expert radiologists.

Citations (6)

Summary

We haven't generated a summary for this paper yet.