Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth locus of twisted affine Schubert varieties and twisted affine Demazure modules (2010.11357v3)

Published 22 Oct 2020 in math.RT and math.AG

Abstract: Let $\mathscr{G}$ be a special parahoric group scheme of twisted type over the ring of formal power series over $\mathbb{C}$, excluding the absolutely special case of $A_{2\ell}{(2)}$. Using the methods and results of Zhu, we prove a duality theorem for general $\mathscr{G}$ : there is a duality between the level one twisted affine Demazure modules and the function rings of certain torus fixed point subschemes in affine Schubert varieties for $\mathscr{G}$. Along the way, we also establish the duality theorem for $E_6$. As a consequence, we determine the smooth locus of any affine Schubert variety in the affine Grassmannian of $\mathscr{G}$. In particular, this confirms a conjecture of Haines and Richarz.

Summary

We haven't generated a summary for this paper yet.