Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of star clusters in the M83 galaxy with a convolutional neural network (2010.11126v1)

Published 21 Oct 2020 in astro-ph.GA and cs.CV

Abstract: We present a study of evolutionary and structural parameters of star cluster candidates in the spiral galaxy M83. For this we use a convolutional neural network trained on mock clusters and capable of fast identification and localization of star clusters, as well as inference of their parameters from multi-band images. We use this pipeline to detect 3,380 cluster candidates in Hubble Space Telescope observations. The sample of cluster candidates shows an age gradient across the galaxy's spiral arms, which is in good agreement with predictions of the density wave theory and other studies. As measured from the dust lanes of the spiral arms, the younger population of cluster candidates peaks at the distance of $\sim$0.4 kpc while the older candidates are more dispersed, but shifted towards $\gtrsim$0.7 kpc in the leading part of the spiral arms. We find high extinction cluster candidates positioned in the trailing part of the spiral arms, close to the dust lanes. We also find a large number of dense older clusters near the center of the galaxy and a slight increase of the typical cluster size further from the center.

Citations (4)

Summary

We haven't generated a summary for this paper yet.