Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Preserving Set-Based Estimation Using Partially Homomorphic Encryption (2010.11097v2)

Published 19 Oct 2020 in cs.CR and cs.RO

Abstract: The set-based estimation has gained a lot of attention due to its ability to guarantee state enclosures for safety-critical systems. However, collecting measurements from distributed sensors often requires outsourcing the set-based operations to an aggregator node, raising many privacy concerns. To address this problem, we present set-based estimation protocols using partially homomorphic encryption that preserve the privacy of the measurements and sets bounding the estimates. We consider a linear discrete-time dynamical system with bounded modeling and measurement uncertainties. Sets are represented by zonotopes and constrained zonotopes as they can compactly represent high-dimensional sets and are closed under linear maps and Minkowski addition. By selectively encrypting parameters of the set representations, we establish the notion of encrypted sets and intersect sets in the encrypted domain, which enables guaranteed state estimation while ensuring privacy. In particular, we show that our protocols achieve computational privacy using the cryptographic notion of computational indistinguishability. We demonstrate the efficiency of our approach by localizing a real mobile quadcopter using ultra-wideband wireless devices.

Citations (11)

Summary

We haven't generated a summary for this paper yet.