Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
54 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

The entropy based goodness of fit tests for generalized von Mises-Fisher distributions and beyond (2010.10918v1)

Published 21 Oct 2020 in math.ST, stat.ME, and stat.TH

Abstract: We introduce some new classes of unimodal rotational invariant directional distributions, which generalize von Mises-Fisher distribution. We propose three types of distributions, one of which represents axial data. For each new type we provide formulae and short computational study of parameter estimators by the method of moments and the method of maximum likelihood. The main goal of the paper is to develop the goodness of fit test to detect that sample entries follow one of the introduced generalized von Mises--Fisher distribution based on the maximum entropy principle. We use $k$th nearest neighbour distances estimator of Shannon entropy and prove its $L2$-consistency. We examine the behaviour of the test statistics, find critical values and compute power of the test on simulated samples. We apply the goodness of fit test to local fiber directions in a glass fibre reinforced composite material and detect the samples which follow axial generalized von Mises--Fisher distribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.