Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Robust Probabilistic Principal Component Analysis using Multivariate $t$-Distributions (2010.10786v2)

Published 21 Oct 2020 in stat.ME and stat.ML

Abstract: Probabilistic principal component analysis (PPCA) is a probabilistic reformulation of principal component analysis (PCA), under the framework of a Gaussian latent variable model. To improve the robustness of PPCA, it has been proposed to change the underlying Gaussian distributions to multivariate $t$-distributions. Based on the representation of $t$-distribution as a scale mixture of Gaussian distributions, a hierarchical model is used for implementation. However, in the existing literature, the hierarchical model implemented does not yield the equivalent interpretation. In this paper, we present two sets of equivalent relationships between the high-level multivariate $t$-PPCA framework and the hierarchical model used for implementation. In doing so, we clarify a current misrepresentation in the literature, by specifying the correct correspondence. In addition, we discuss the performance of different multivariate $t$ robust PPCA methods both in theory and simulation studies, and propose a novel Monte Carlo expectation-maximization (MCEM) algorithm to implement one general type of such models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.