Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FreeDOM: A Transferable Neural Architecture for Structured Information Extraction on Web Documents (2010.10755v1)

Published 21 Oct 2020 in cs.CL and cs.IR

Abstract: Extracting structured data from HTML documents is a long-studied problem with a broad range of applications like augmenting knowledge bases, supporting faceted search, and providing domain-specific experiences for key verticals like shopping and movies. Previous approaches have either required a small number of examples for each target site or relied on carefully handcrafted heuristics built over visual renderings of websites. In this paper, we present a novel two-stage neural approach, named FreeDOM, which overcomes both these limitations. The first stage learns a representation for each DOM node in the page by combining both the text and markup information. The second stage captures longer range distance and semantic relatedness using a relational neural network. By combining these stages, FreeDOM is able to generalize to unseen sites after training on a small number of seed sites from that vertical without requiring expensive hand-crafted features over visual renderings of the page. Through experiments on a public dataset with 8 different verticals, we show that FreeDOM beats the previous state of the art by nearly 3.7 F1 points on average without requiring features over rendered pages or expensive hand-crafted features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bill Yuchen Lin (72 papers)
  2. Ying Sheng (31 papers)
  3. Nguyen Vo (12 papers)
  4. Sandeep Tata (14 papers)
Citations (41)