Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invertible Low-Divergence Coding (2010.10583v1)

Published 20 Oct 2020 in cs.IT and math.IT

Abstract: Several applications in communication, control, and learning require approximating target distributions to within small informational divergence (I-divergence). The additional requirement of invertibility usually leads to using encoders that are one-to-one mappings, also known as distribution matchers. However, even the best one-to-one encoders have I-divergences that grow logarithmically with the block length in general. To improve performance, an encoder is proposed that has an invertible one-to-many mapping and a low-rate resolution code. Two algorithms are developed to design the mapping by assigning strings in either a most-likely first or least-likely first order. Both algorithms give information rates approaching the entropy of the target distribution with exponentially decreasing I-divergence and with vanishing resolution rate in the block length.

Citations (3)

Summary

We haven't generated a summary for this paper yet.