Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inequalities for space-bounded Kolmogorov complexity (2010.10221v4)

Published 20 Oct 2020 in cs.IT, math.IT, and math.LO

Abstract: There is a parallelism between Shannon information theory and algorithmic information theory. In particular, the same linear inequalities are true for Shannon entropies of tuples of random variables and Kolmogorov complexities of tuples of strings (Hammer et al., 1997), as well as for sizes of subgroups and projections of sets (Chan, Yeung, Romashchenko, Shen, Vereshchagin, 1998--2002). This parallelism started with the Kolmogorov-Levin formula (1968) for the complexity of pairs of strings with logarithmic precision. Longpr\'e (1986) proved a version of this formula for space-bounded complexities. In this paper we prove an improved version of Longpr\'e's result with a tighter space bound, using Sipser's trick (1980). Then, using this space bound, we show that every linear inequality that is true for complexities or entropies, is also true for space-bounded Kolmogorov complexities with a polynomial space overhead.

Summary

We haven't generated a summary for this paper yet.