Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Optimization as Data Augmentation for Large-scale Graphs (2010.09891v3)

Published 19 Oct 2020 in cs.LG and stat.ML

Abstract: Data augmentation helps neural networks generalize better by enlarging the training set, but it remains an open question how to effectively augment graph data to enhance the performance of GNNs (Graph Neural Networks). While most existing graph regularizers focus on manipulating graph topological structures by adding/removing edges, we offer a method to augment node features for better performance. We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training. By making the model invariant to small fluctuations in input data, our method helps models generalize to out-of-distribution samples and boosts model performance at test time. FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks. FLAG is also highly flexible and scalable, and is deployable with arbitrary GNN backbones and large-scale datasets. We demonstrate the efficacy and stability of our method through extensive experiments and ablation studies. We also provide intuitive observations for a deeper understanding of our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Kezhi Kong (12 papers)
  2. Guohao Li (43 papers)
  3. Mucong Ding (18 papers)
  4. Zuxuan Wu (144 papers)
  5. Chen Zhu (103 papers)
  6. Bernard Ghanem (255 papers)
  7. Gavin Taylor (20 papers)
  8. Tom Goldstein (226 papers)
Citations (70)