2000 character limit reached
Online Active Model Selection for Pre-trained Classifiers (2010.09818v3)
Published 19 Oct 2020 in cs.LG and stat.ML
Abstract: Given $k$ pre-trained classifiers and a stream of unlabeled data examples, how can we actively decide when to query a label so that we can distinguish the best model from the rest while making a small number of queries? Answering this question has a profound impact on a range of practical scenarios. In this work, we design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round. Our algorithm can be used for online prediction tasks for both adversarial and stochastic streams. We establish several theoretical guarantees for our algorithm and extensively demonstrate its effectiveness in our experimental studies.
- Mohammad Reza Karimi (9 papers)
- Nezihe Merve Gürel (15 papers)
- Bojan Karlaš (12 papers)
- Johannes Rausch (5 papers)
- Ce Zhang (215 papers)
- Andreas Krause (269 papers)