Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Recovery Analysis of Generalized $J$-Minimization with Results for Sparsity Promoting Functions with Monotonic Elasticity (2010.09755v1)

Published 19 Oct 2020 in cs.IT, math.IT, and math.OC

Abstract: In this paper we theoretically study exact recovery of sparse vectors from compressed measurements by minimizing a general nonconvex function that can be decomposed into the sum of single variable functions belonging to a class of smooth nonconvex sparsity promoting functions. Null space property (NSP) and restricted isometry property (RIP) are used as key theoretical tools. The notion of \emph{scale function} associated to a sparsity promoting function is introduced to generalize the state-of-the-art analysis technique of the $l_p$ minimization problem. The analysis is used to derive an upper bound on the null space constant (NSC) associated to this general nonconvex minimization problem, which is further utilized to derive sufficient conditions for exact recovery as upper bounds on the restricted isometry constant (RIC), as well as bounds on optimal sparsity $K$ for which exact recovery occurs. The derived bounds are explicitly calculated when the sparsity promoting function $f$ under consideration possesses the property that the associated \emph{elasticity function}, defined as, $\psi(x)=\frac{xdf(x)/dx}{f(x)}$, is monotonic in nature. Numerical simulations are carried out to verify the efficacy of the bounds and interesting conclusions are drawn about the comparative performances of different sparsity promoting functions for the problem of $1$-sparse signal recovery.

Summary

We haven't generated a summary for this paper yet.