Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 86 tok/s
GPT OSS 120B 459 tok/s Pro
Kimi K2 195 tok/s Pro
2000 character limit reached

Noise-driven Topological Changes in Chaotic Dynamics (2010.09611v7)

Published 19 Oct 2020 in nlin.CD

Abstract: Noise modifies the behavior of chaotic systems in both quantitative and qualitative ways. To study these modifications, the present work compares the topological structure of the deterministic Lorenz (1963) attractor with its stochastically perturbed version. The deterministic attractor is well known to be "strange" but it is frozen in time. When driven by multiplicative noise, the Lorenz model's random attractor (LORA) evolves in time. Algebraic topology sheds light on the most striking effects involved in such an evolution. In order to examine the topological structure of the snapshots that approximate LORA, we use Branched Manifold Analysis through Homologies (BraMAH) -- a technique originally introduced to characterize the topological structure of deterministically chaotic flows -- which is being extended herein to nonlinear noise-driven systems. The analysis is performed for a fixed realization of the driving noise at different time instants in time. The results suggest that LORA's evolution includes sharp transitions that appear as topological tipping points.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube