Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comprehensive evaluation of no-reference image quality assessment algorithms on KADID-10k database (2010.09414v2)

Published 19 Oct 2020 in eess.IV and cs.CV

Abstract: The main goal of objective image quality assessment is to devise computational, mathematical models which are able to predict perceptual image quality consistently with subjective evaluations. The evaluation of objective image quality assessment algorithms is based on experiments conducted on publicly available benchmark databases. In this study, our goal is to give a comprehensive evaluation about no-reference image quality assessment algorithms, whose original source codes are available online, using the recently published KADID-10k database which is one of the largest available benchmark databases. Specifically, average PLCC, SROCC, and KROCC are reported which were measured over 100 random train-test splits. Furthermore, the database was divided into a train (appx. 80\% of images) and a test set (appx. 20% of images) with respect to the reference images. So no semantic content overlap was between these two sets. Our evaluation results may be helpful to obtain a clear understanding about the status of state-of-the-art no-reference image quality assessment methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.