Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Painlevé type reductions for the non-Abelian Volterra lattices (2010.09021v1)

Published 18 Oct 2020 in nlin.SI, math-ph, and math.MP

Abstract: The Volterra lattice admits two non-Abelian analogs that preserve the integrability property. For each of them, the stationary equation for non-autonomous symmetries defines a constraint that is consistent with the lattice and leads to Painlev\'e-type equations. In the case of symmetries of low order, including the scaling and master-symmetry, this constraint can be reduced to second order equations. This gives rise to two non-Abelian generalizations for the discrete Painlev\'e equations dP$1$ and dP${34}$ and for the continuous Painlev\'e equations P$_3$, P$_4$ and P$_5$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)