Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arboricity games: the core and the nucleolus (2010.08936v3)

Published 18 Oct 2020 in cs.GT and cs.DM

Abstract: The arboricity of a graph is the minimum number of forests required to cover all its edges. In this paper, we examine arboricity from a game-theoretic perspective and investigate cost-sharing in the minimum forest cover problem. We introduce the arboricity game as a cooperative cost game defined on a graph. The players are edges, and the cost of each coalition is the arboricity of the subgraph induced by the coalition. We study properties of the core and propose an efficient algorithm for computing the nucleolus when the core is not empty. In order to compute the nucleolus in the core, we introduce the prime partition which is built on the densest subgraph lattice. The prime partition decomposes the edge set of a graph into a partially ordered set defined from minimal densest minors and their invariant precedence relation. Moreover, edges from the same partition always have the same value in a core allocation. Consequently, when the core is not empty, the prime partition significantly reduces the number of variables and constraints required in the linear programs of Maschler's scheme and allows us to compute the nucleolus in polynomial time. Besides, the prime partition provides a graph decomposition analogous to the celebrated core decomposition and the density-friendly decomposition, which may be of independent interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.