Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Drink Bleach or Do What Now? Covid-HeRA: A Study of Risk-Informed Health Decision Making in the Presence of COVID-19 Misinformation (2010.08743v2)

Published 17 Oct 2020 in cs.CL, cs.CY, and cs.LG

Abstract: Given the widespread dissemination of inaccurate medical advice related to the 2019 coronavirus pandemic (COVID-19), such as fake remedies, treatments and prevention suggestions, misinformation detection has emerged as an open problem of high importance and interest for the research community. Several works study health misinformation detection, yet little attention has been given to the perceived severity of misinformation posts. In this work, we frame health misinformation as a risk assessment task. More specifically, we study the severity of each misinformation story and how readers perceive this severity, i.e., how harmful a message believed by the audience can be and what type of signals can be used to recognize potentially malicious fake news and detect refuted claims. To address our research questions, we introduce a new benchmark dataset, accompanied by detailed data analysis. We evaluate several traditional and state-of-the-art models and show there is a significant gap in performance when applying traditional misinformation classification models to this task. We conclude with open challenges and future directions.

Citations (15)

Summary

We haven't generated a summary for this paper yet.