Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained Motion Planning Networks X (2010.08707v2)

Published 17 Oct 2020 in cs.RO, cs.AI, cs.LG, and math.DG

Abstract: Constrained motion planning is a challenging field of research, aiming for computationally efficient methods that can find a collision-free path on the constraint manifolds between a given start and goal configuration. These planning problems come up surprisingly frequently, such as in robot manipulation for performing daily life assistive tasks. However, few solutions to constrained motion planning are available, and those that exist struggle with high computational time complexity in finding a path solution on the manifolds. To address this challenge, we present Constrained Motion Planning Networks X (CoMPNetX). It is a neural planning approach, comprising a conditional deep neural generator and discriminator with neural gradients-based fast projection operator. We also introduce neural task and scene representations conditioned on which the CoMPNetX generates implicit manifold configurations to turbo-charge any underlying classical planner such as Sampling-based Motion Planning methods for quickly solving complex constrained planning tasks. We show that our method finds path solutions with high success rates and lower computation times than state-of-the-art traditional path-finding tools on various challenging scenarios.

Citations (31)

Summary

We haven't generated a summary for this paper yet.