Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projection-free Online Learning over Strongly Convex Sets (2010.08177v2)

Published 16 Oct 2020 in cs.LG and math.OC

Abstract: To efficiently solve online problems with complicated constraints, projection-free algorithms including online frank-wolfe (OFW) and its variants have received significant interest recently. However, in the general case, existing efficient projection-free algorithms only achieved the regret bound of $O(T{3/4})$, which is worse than the regret of projection-based algorithms, where $T$ is the number of decision rounds. In this paper, we study the special case of online learning over strongly convex sets, for which we first prove that OFW can enjoy a better regret bound of $O(T{2/3})$ for general convex losses. The key idea is to refine the decaying step-size in the original OFW by a simple line search rule. Furthermore, for strongly convex losses, we propose a strongly convex variant of OFW by redefining the surrogate loss function in OFW. We show that it achieves a regret bound of $O(T{2/3})$ over general convex sets and a better regret bound of $O(\sqrt{T})$ over strongly convex sets.

Citations (21)

Summary

We haven't generated a summary for this paper yet.