Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overfitting or Underfitting? Understand Robustness Drop in Adversarial Training (2010.08034v1)

Published 15 Oct 2020 in cs.LG, cs.AI, and cs.CV

Abstract: Our goal is to understand why the robustness drops after conducting adversarial training for too long. Although this phenomenon is commonly explained as overfitting, our analysis suggest that its primary cause is perturbation underfitting. We observe that after training for too long, FGSM-generated perturbations deteriorate into random noise. Intuitively, since no parameter updates are made to strengthen the perturbation generator, once this process collapses, it could be trapped in such local optima. Also, sophisticating this process could mostly avoid the robustness drop, which supports that this phenomenon is caused by underfitting instead of overfitting. In the light of our analyses, we propose APART, an adaptive adversarial training framework, which parameterizes perturbation generation and progressively strengthens them. Shielding perturbations from underfitting unleashes the potential of our framework. In our experiments, APART provides comparable or even better robustness than PGD-10, with only about 1/4 of its computational cost.

Citations (7)

Summary

We haven't generated a summary for this paper yet.