Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inducing Alignment Structure with Gated Graph Attention Networks for Sentence Matching (2010.07668v2)

Published 15 Oct 2020 in cs.CL and cs.AI

Abstract: Sentence matching is a fundamental task of natural language processing with various applications. Most recent approaches adopt attention-based neural models to build word- or phrase-level alignment between two sentences. However, these models usually ignore the inherent structure within the sentences and fail to consider various dependency relationships among text units. To address these issues, this paper proposes a graph-based approach for sentence matching. First, we represent a sentence pair as a graph with several carefully design strategies. We then employ a novel gated graph attention network to encode the constructed graph for sentence matching. Experimental results demonstrate that our method substantially achieves state-of-the-art performance on two datasets across tasks of natural language and paraphrase identification. Further discussions show that our model can learn meaningful graph structure, indicating its superiority on improved interpretability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.