Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 106 tok/s
GPT OSS 120B 460 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Static spacetimes haunted by a phantom scalar field II: dilatonic charged solutions (2010.07560v2)

Published 15 Oct 2020 in gr-qc and hep-th

Abstract: We present a method to generate static solutions in the Einstein-Maxwell system with a (phantom) dilaton field in $n(\ge 4)$-dimensions, based upon the symmetry of the target space for the nonlinear sigma model. Unlike the conventional Einstein-Maxwell-dilaton system, there appears a critical value of the coupling constant for a phantom dilaton field. In the noncritical case, the target space is $\mathbb R\times {\rm SL}(2,\mathbb R)/H$ with the maximal subgroup $H={{\rm SO}(2), {\rm SO}(1,1)}$, whereas in the critical case the target space becomes a symmetric pp-wave and the corresponding Killing vectors form a non-semisimple algebra. In either case, we apply the formalism to charge up the neutral solutions and show the analytical expression for dilatonic charged versions of (i) the Fisher solution, (ii) the Gibbons solution, and (iii) the Ellis-Bronnikov solution. We discuss global structures of these solutions in detail. It turns out that some solutions contained in the Fisher and Gibbons classes possess the parallelly propagated (p.p) curvature singularities in the parameter region where all the scalar curvature invariants remain bounded. These p.p curvature singularities are not veiled by a horizon, thrusting them into physically untenable nakedly singular spacetimes. We also demonstrate that the dilatonic-charged Ellis-Bronnikov solution admits a parameter range under which the solution represents a regular wormhole spacetime in the two-sided asymptotically flat regions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube