Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Ranking for Representation Learning (2010.07258v2)

Published 14 Oct 2020 in cs.CV

Abstract: We present a new framework for self-supervised representation learning by formulating it as a ranking problem in an image retrieval context on a large number of random views (augmentations) obtained from images. Our work is based on two intuitions: first, a good representation of images must yield a high-quality image ranking in a retrieval task; second, we would expect random views of an image to be ranked closer to a reference view of that image than random views of other images. Hence, we model representation learning as a learning to rank problem for image retrieval. We train a representation encoder by maximizing average precision (AP) for ranking, where random views of an image are considered positively related, and that of the other images considered negatives. The new framework, dubbed S2R2, enables computing a global objective on multiple views, compared to the local objective in the popular contrastive learning framework, which is calculated on pairs of views. In principle, by using a ranking criterion, we eliminate reliance on object-centric curated datasets. When trained on STL10 and MS-COCO, S2R2 outperforms SimCLR and the clustering-based contrastive learning model, SwAV, while being much simpler both conceptually and at implementation. On MS-COCO, S2R2 outperforms both SwAV and SimCLR with a larger margin than on STl10. This indicates that S2R2 is more effective on diverse scenes and could eliminate the need for an object-centric large training dataset for self-supervised representation learning.

Citations (8)

Summary

We haven't generated a summary for this paper yet.