Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Imitation Learning for Robot Tasks with Sparse and Delayed Rewards (2010.06962v3)

Published 14 Oct 2020 in cs.LG and cs.AI

Abstract: The application of reinforcement learning (RL) in robotic control is still limited in the environments with sparse and delayed rewards. In this paper, we propose a practical self-imitation learning method named Self-Imitation Learning with Constant Reward (SILCR). Instead of requiring hand-defined immediate rewards from environments, our method assigns the immediate rewards at each timestep with constant values according to their final episodic rewards. In this way, even if the dense rewards from environments are unavailable, every action taken by the agents would be guided properly. We demonstrate the effectiveness of our method in some challenging continuous robotics control tasks in MuJoCo simulation and the results show that our method significantly outperforms the alternative methods in tasks with sparse and delayed rewards. Even compared with alternatives with dense rewards available, our method achieves competitive performance. The ablation experiments also show the stability and reproducibility of our method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.