Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Growth of Random Trees by Leaf Attachment (2010.05589v3)

Published 12 Oct 2020 in cs.DS, cs.CR, math.PR, and stat.AP

Abstract: We study the growth of a time-ordered rooted tree by probabilistic attachment of new vertices to leaves. We construct a likelihood function of the leaves based on the connectivity of the tree. We take such connectivity to be induced by the merging of directed ordered paths from leaves to the root. Combining the likelihood with an assigned prior distribution leads to a posterior leaf distribution from which we sample attachment points for new vertices. We present computational examples of such Bayesian tree growth. Although the discussion is generic, the initial motivation for the paper is the concept of a distributed ledger, which may be regarded as a time-ordered random tree that grows by probabilistic leaf attachment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.