Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilling a Deep Neural Network into a Takagi-Sugeno-Kang Fuzzy Inference System (2010.04974v1)

Published 10 Oct 2020 in cs.AI

Abstract: Deep neural networks (DNNs) demonstrate great success in classification tasks. However, they act as black boxes and we don't know how they make decisions in a particular classification task. To this end, we propose to distill the knowledge from a DNN into a fuzzy inference system (FIS), which is Takagi-Sugeno-Kang (TSK)-type in this paper. The model has the capability to express the knowledge acquired by a DNN based on fuzzy rules, thus explaining a particular decision much easier. Knowledge distillation (KD) is applied to create a TSK-type FIS that generalizes better than one directly from the training data, which is guaranteed through experiments in this paper. To further improve the performances, we modify the baseline method of KD and obtain good results.

Citations (7)

Summary

We haven't generated a summary for this paper yet.