Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Long-Tailed Phenomena in Neural Machine Translation (2010.04924v1)

Published 10 Oct 2020 in cs.CL, cs.AI, and cs.LG

Abstract: State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens, tackling which remains a major challenge. The analysis of long-tailed phenomena in the context of structured prediction tasks is further hindered by the added complexities of search during inference. In this work, we quantitatively characterize such long-tailed phenomena at two levels of abstraction, namely, token classification and sequence generation. We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation by incorporating the inductive biases of beam search in the training process. We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy across different language pairs, especially on the generation of low-frequency words. We have released the code to reproduce our results.

Citations (28)

Summary

We haven't generated a summary for this paper yet.