Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test-Cost Sensitive Methods for Identifying Nearby Points (2010.03962v1)

Published 4 Oct 2020 in cs.LG and cs.AI

Abstract: Real-world applications that involve missing values are often constrained by the cost to obtain data. Test-cost sensitive, or costly feature, methods additionally consider the cost of acquiring features. Such methods have been extensively studied in the problem of classification. In this paper, we study a related problem of test-cost sensitive methods to identify nearby points from a large set, given a new point with some unknown feature values. We present two models, one based on a tree and another based on Deep Reinforcement Learning. In our simulations, we show that the models outperform random agents on a set of five real-world data sets.

Summary

We haven't generated a summary for this paper yet.