Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Robust Framework for Analyzing Gradient-Based Dynamics in Bilinear Games (2010.03211v1)

Published 7 Oct 2020 in math.OC and cs.GT

Abstract: In this work, we establish a frequency-domain framework for analyzing gradient-based algorithms in linear minimax optimization problems; specifically, our approach is based on the Z-transform, a powerful tool applied in Control Theory and Signal Processing in order to characterize linear discrete-time systems. We employ our framework to obtain the first tight analysis of stability of Optimistic Gradient Descent/Ascent (OGDA), a natural variant of Gradient Descent/Ascent that was shown to exhibit last-iterate convergence in bilinear games by Daskalakis et al. \cite{DBLP:journals/corr/abs-1711-00141}. Importantly, our analysis is considerably simpler and more concise than the existing ones. Moreover, building on the intuition of OGDA, we consider a general family of gradient-based algorithms that augment the memory of the optimization through multiple historical steps. We reduce the convergence -- to a saddle-point -- of the dynamics in bilinear games to the stability of a polynomial, for which efficient algorithmic schemes are well-established. As an immediate corollary, we obtain a broad class of algorithms -- that contains OGDA as a special case -- with a last-iterate convergence guarantee to the space of Nash equilibria of the game.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ioannis Anagnostides (34 papers)
  2. Paolo Penna (30 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.