Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perfect state transfer in NEPS of complete graphs (2010.03198v1)

Published 7 Oct 2020 in math.CO

Abstract: Perfect state transfer in graphs is a concept arising from quantum physics and quantum computing. Given a graph $G$ with adjacency matrix $A_G$, the transition matrix of $G$ with respect to $A_G$ is defined as $H_{A_{G}}(t) = \exp(-\mathrm{i}tA_{G})$, $t \in \mathbb{R},\ \mathrm{i}=\sqrt{-1}$. We say that perfect state transfer from vertex $u$ to vertex $v$ occurs in $G$ at time $\tau$ if $u \ne v$ and the modulus of the $(u,v)$-entry of $H_{A_G}(\tau)$ is equal to $1$. If the moduli of all diagonal entries of $H_{A_G}(\tau)$ are equal to $1$ for some $\tau$, then $G$ is called periodic with period $\tau$. In this paper we give a few sufficient conditions for NEPS of complete graphs to be periodic or exhibit perfect state transfer.

Summary

We haven't generated a summary for this paper yet.