Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Shrinkage Approaches to Unbalanced Problems of Estimation and Prediction on the Basis of Negative Multinomial Samples (2010.03141v2)

Published 7 Oct 2020 in math.ST, stat.ME, and stat.TH

Abstract: In this paper, we treat estimation and prediction problems where negative multinomial variables are observed and in particular consider unbalanced settings. First, the problem of estimating multiple negative multinomial parameter vectors under the standardized squared error loss is treated and a new empirical Bayes estimator which dominates the UMVU estimator under suitable conditions is derived. Second, we consider estimation of the joint predictive density of several multinomial tables under the Kullback-Leibler divergence and obtain a sufficient condition under which the Bayesian predictive density with respect to a hierarchical shrinkage prior dominates the Bayesian predictive density with respect to the Jeffreys prior. Third, our proposed Bayesian estimator and predictive density give risk improvements in simulations. Finally, the problem of estimating the joint predictive density of negative multinomial variables is discussed.

Summary

We haven't generated a summary for this paper yet.