Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Diverse Options via InfoMax Termination Critic (2010.02756v2)

Published 6 Oct 2020 in cs.LG and cs.AI

Abstract: We consider the problem of autonomously learning reusable temporally extended actions, or options, in reinforcement learning. While options can speed up transfer learning by serving as reusable building blocks, learning reusable options for unknown task distribution remains challenging. Motivated by the recent success of mutual information (MI) based skill learning, we hypothesize that more diverse options are more reusable. To this end, we propose a method for learning termination conditions of options by maximizing MI between options and corresponding state transitions. We derive a scalable approximation of this MI maximization via gradient ascent, yielding the InfoMax Termination Critic (IMTC) algorithm. Our experiments demonstrate that IMTC significantly improves the diversity of learned options without extrinsic rewards combined with an intrinsic option learning method. Moreover, we test the reusability of learned options by transferring options into various tasks, confirming that IMTC helps quick adaptation, especially in complex domains where an agent needs to manipulate objects.

Citations (1)

Summary

We haven't generated a summary for this paper yet.