Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Relevance of Cross-project Learning with Nearest Neighbours for Commit Message Generation (2010.01924v1)

Published 5 Oct 2020 in cs.SE

Abstract: Commit messages play an important role in software maintenance and evolution. Nonetheless, developers often do not produce high-quality messages. A number of commit message generation methods have been proposed in recent years to address this problem. Some of these methods are based on neural machine translation (NMT) techniques. Studies show that the nearest neighbor algorithm (NNGen) outperforms existing NMT-based methods, although NNGen is simpler and faster than NMT. In this paper, we show that NNGen does not take advantage of cross-project learning in the majority of the cases. We also show that there is an even simpler and faster variation of the existing NNGen method which outperforms it in terms of the BLEU_4 score without using cross-project learning.

Citations (7)

Summary

We haven't generated a summary for this paper yet.