Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Catastrophic Overfitting in Single-step Adversarial Training (2010.01799v2)

Published 5 Oct 2020 in cs.LG, eess.IV, and stat.ML

Abstract: Although fast adversarial training has demonstrated both robustness and efficiency, the problem of "catastrophic overfitting" has been observed. This is a phenomenon in which, during single-step adversarial training, the robust accuracy against projected gradient descent (PGD) suddenly decreases to 0% after a few epochs, whereas the robust accuracy against fast gradient sign method (FGSM) increases to 100%. In this paper, we demonstrate that catastrophic overfitting is very closely related to the characteristic of single-step adversarial training which uses only adversarial examples with the maximum perturbation, and not all adversarial examples in the adversarial direction, which leads to decision boundary distortion and a highly curved loss surface. Based on this observation, we propose a simple method that not only prevents catastrophic overfitting, but also overrides the belief that it is difficult to prevent multi-step adversarial attacks with single-step adversarial training.

Citations (100)

Summary

We haven't generated a summary for this paper yet.