Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Sequence Learning for Generating Adequate Question-Answer Pairs (2010.01620v2)

Published 4 Oct 2020 in cs.CL

Abstract: Creating multiple-choice questions to assess reading comprehension of a given article involves generating question-answer pairs (QAPs) on the main points of the document. We present a learning scheme to generate adequate QAPs via meta-sequence representations of sentences. A meta sequence is a sequence of vectors comprising semantic and syntactic tags. In particular, we devise a scheme called MetaQA to learn meta sequences from training data to form pairs of a meta sequence for a declarative sentence (MD) and a corresponding interrogative sentence (MIs). On a given declarative sentence, a trained MetaQA model converts it to a meta sequence, finds a matched MD, and uses the corresponding MIs and the input sentence to generate QAPs. We implement MetaQA for the English language using semantic-role labeling, part-of-speech tagging, and named-entity recognition, and show that trained on a small dataset, MetaQA generates efficiently over the official SAT practice reading tests a large number of syntactically and semantically correct QAPs with over 97\% accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.