Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hit ratio: An Evaluation Metric for Hashtag Recommendation (2010.01258v1)

Published 3 Oct 2020 in cs.IR and cs.LG

Abstract: Hashtag recommendation is a crucial task, especially with an increase of interest in using social media platforms such as Twitter in the last decade. Hashtag recommendation systems automatically suggest hashtags to a user while writing a tweet. Most of the research in the area of hashtag recommendation have used classical metrics such as hit rate, precision, recall, and F1-score to measure the accuracy of hashtag recommendation systems. These metrics are based on the exact match of the recommended hashtags with their corresponding ground truth. However, it is not clear how adequate these metrics to evaluate hashtag recommendation. The research question that we are interested in seeking an answer is: are these metrics adequate for evaluating hashtag recommendation systems when the numbers of ground truth hashtags in tweets are highly variable? In this paper, we propose a new metric which we call hit ratio for hashtag recommendation. Extensive evaluation through hypothetical examples and real-world application across a range of hashtag recommendation models indicate that the hit ratio is a useful metric. A comparison of hit ratio with the classical evaluation metrics reveals their limitations.

Citations (12)

Summary

We haven't generated a summary for this paper yet.